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Abstract 

Presented are new analytic solutions to Einstein's field equations with properties 
normally associated with supernovas. These are the first analytic supernova models 
with pressure, temperature, and luminosity. These solutions are used to compare a 
radiative nonzero model (for which the pressure is continuous accross the outer boundary 
of the star) with a radiative zero model [(standard model) for which the pressure within 
the star is zero at the outer boundary]. 

l .  Introduction 

The study o f  the collapse and explosion o f  a star (an event characterizing a 
supernova) often requires large complicated computer programs to do the 
numerical hydrodynamics.  There are still many questions that  remain to  be 
answered, such as whether neutrinos can eject a significant port ion of  a s tar  
(Colgate and White, 1966; Arnett ,  1966; 1967;Wilson, 1971 ; 1974; Schwartz, 
1967) or whether there remains a stable star if the carbon core detonates 
(Arnett ,  1969). Because there are even questions concerning the input  data and 
method of  solution (Colgate and Chert, 1972) it would be useful to have an 
analytic model of  a collapsing star even if the characteristics of  the model  fluid 
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36  ADAMS AND COHEN 

such as equation of state, rate of energy generation, and opacity were not 
those derived from a theory. 

An analytic model could give insights into what phenomena dominate the 
structure of the star and what is the relative importance of the various 
characteristics such as temperature, energy generation, and opacity in producing 
a given luminosity. Such a model could give a zero-order solution with which 
to investigate the effects of weak shocks in general relativity. At the very least 
an anlytic model could provide a rigorous check on a complicated computer 
code. 

2. Equations to be Solved 

In a frame of reference at rest with respect to the matter of the star (called 
the comoving frame) the metric can be written (Landau and IAfshitz, 1971) 

dS 2 = - A 2 d t  z + B2dr 2 + R2dO 2 + R z sin20dq52 (2.1) 

where G = e = 1 and the metric parameters A, B, and R are functions of both 
r and t. This metric differs from those used in other relativistic formulations of 
hydrodynamics (Wilson, 1971 ; 1974; Schwartz, 1967) in the choice of the 
Lagrangian coordinate r instead of the mass. Such a choice allows analytic 
solutions to be derived. Of course, all formulations must produce equivalent 
results. The metric in equation (2. t)  leads to the Einstein field equations in 
the comoving frame (Landau and Lifshitz, 1971) 

8zrT °° =R -2 - RrZ(RB) -z + Rt2(AR ) -2 - 2(RB) -1 (Rr/B)r + 2RtBt(A 2RB)-I (2.2) 

8 ~ T  11 = 2 A ~ , ( A B 2 R )  -~ - 2 ( A R ) - I ( R d A  ) t  - R -2 + R T ( R ~ )  -2 - R t 2 ( A R )  -2 (2.3) 

8rrT 22 = 8rrT 33 = ArRr(AB2R) -I - RtBt(A 2RB)-I - (AR)  -~ (Rt /A) t  

+ (AB)  -~( .4~/~)~(RB) -~ - (AB)  -~ (Bt/A)~ (2 .4)  

8rrT 01 = 2(Rr/B )t(AR ) -1 - 2ArR t(A 2RB ) -1 (2 .5 )  

where a subscript denotes differentiation with respect to the variable. 
To be acceptable the model must have reasonable characteristics such as 

mass, m, radius ~, and luminosity L =, as seen by an outside observer. As shown 
in Appendix A, the mass, radius, and luminosity in the exterior frame of 
reference (in terms of variables in the comoving frame evaluated at the outer 
boundary ro) is given by (Misner, 1965; Lindquist, 1966) 

2m = R [1 - Rr2B -2 + Rt2A -~] (2.6) 

~(t) -= R (to, t) (2.7) 

L =  = -RVU~(AB)-~[1 + BRt(AR~) -~1 (2.8) 

while the time interval, du, of such an external observer is related to dt  by 
(Lindquist etal. ,  1965; Vadiya. 1951 ; 1953) [See equation (A3)] 

du = A B d t R r  1 [1 + BRt(ARr)-I] -1 (2.9) 



ANALYTIC SUPERNOVA MODELS AND BLACK HOLES 37 

All the relevant interior quantities, A, B, R and the components of the stress 
energy tensor can be functions of both r and t. It is a highly nonlinear system 
of equations, the numerical solution of which taxes the capacity of the biggest 
and fastest computers. 

We will solve these equations with a method used successfully to solve the 
rotation equation (Adams et at., 1974) and the static field equations (Adams 
and Cohen, 1975). The method is to invert the usual problem solved in 
astrophysics. Instead of assuming some form of the equation of state (a definite 
relationship between the pressure, density, and temperature, usually derived 
from equilibrium considerations that may not be applicable in a supernova), we 
find a solution and determine what equation of state induced such a result. The 
details of the solution are given in Appendix B. 

For every general solution to the field equations there are at least two 
distinct boundary conditions that can be imposed. The first is that the radial 
components of the stress energy tensor join continuously at the outer stellar 
boundary. TbSs implies that there is a finite pressure at the outer boundary 
since there is a finite energy flux carried by neutrinos or photons in the exterior 
regions. This will be called the radiative nonzero solution. This will be dis- 
cussed in Appendix B. Another often used condition is the radiative zero 
(characterized by vanishing pressure at the outer boundary) familiar to astro- 
physicists because of its use in the standard model (Chandrasekhar, 1939). 
Having analytic formulas will allow a detailed comparison of the two. 
Undoubtedly, there are more realistic boundary conditions, but in the absence 
of a detailed theory of the supernova boundary layers, these two will be used 
here. Even for nearly adiabatic Newtonian stars, the theory of boundary 
layers is complicated, and an ambiguous element of the theory of stellar 
evolution (Schwarzschild, 1958). Presented in the next two sections are 
models that are essentially identical except for the boundary conditions 
imposed upon the stress energy tensor at the outer boundary of the star. 

3. A Solution-Radiative Nonzero  

A solution for a star collapsing to a black hole (for which the surface pressure 
is continuous) is given by (see Appendix B for the derivation) 

R(r, t) = re -~t (3.1) 

B(r, t) = e'~t[1 - (ao + 311ro2)2/a4alr2(ao + 311r2) -2/3 × (ao + 511r02) -1 ] 1/2 (3.2) 

A(r,  t) = a(ao + alrZ)e  -3~t/2 [{a + 4alro(a o + alro2) 1/2 

x (ao + 511r2)  -1/2} - e-~t/2411ro(ao +alto2) m 

x (ao + 5alro2)-l/21-1 (3.3) 
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8nT °° = 4al(3ao + 5air 2) (ao + 3alro2)2/3e2=t(ao + 3air2) -s/3 

x (ao + 5alro2) -1 + 3 [7 - eat12(~7 + qo)] 2(ao + alro2) 3 

x e2at(ao + alr2)-2(ao + 5air02) -1 (3.4) 

81rT 11 = 4ale2at(ao +a~r2) -t  (1 - (ao + 3alro2)2/3(ao + 5air 2) 

x (% + 3a~r2)-2/3(a o + Salro2) -1 + [eatl2(n + qo) - rl] 

x (ao + atro2)2(ao + 5alro2)-l(ao + air2) -1) (3.5) 

87rT °1 = 4alr(ao +air2)  -2 [1 - 4alr2(ao + 3alro2)2/3(ao + 5alro2) -1 

x (ao + 3air2) -2/3] 1/2[(q0 + rl)e at/2 -- r~] (a 0 + air02) 3/2 

x e2atr~ 1 (ao + 5alro2) -1/: (3.6) 

where a o, a l ,  and r o are integration constants related to the dimensionless 
parameters qo and ~7 by 

rl = 4atro2(ao + alro2) -1 (3.7) 

qo = aro(ao + 5alro2)1/2(ao + alro2) -3/2 (3.8) 

The mass and luminosity can be written in terms of  the parameter q(t)  
defined as 

q = eat/2(q o + rl) (1 + r/) -1 (3.9) 

so that 

2m = roe-at(4alro 2 + (ao +alto 2) [~7 - (1 + ~7)q] 2)(ao + 5alro2) -1 (3.10) 

L~ = 2alro2(1 + r/)2(ao +alro2)(ao + 5alro2)-Z[q(1 + 7) - r / ]  x (1 _q)2  (3.11) 

The time, u, of  a distant external observer also can be expressed in terms of  

q [equation (2.9)]: 

U = 2ro(qo + r/)2(1 + rl)-3(ao + S a l t 2 )  (ao +alro2)-lF(q,~l) (3.12) 

where 

F(q ,  r/) = - l n ( q  -1 - I)  - q-1 _ q-2/2 + q-2(~-I + 1)/2 + q-1(~/-I + 1)2 

+ (7 -1 + t )  3 In [1 - q-1(~-1 + 1)-1] (3.13) 

The effective surface temperature seen by an external observer is related to the 
total luminosity by (Schwarzschild, 1958) 

Te 4 = e 2C~tL= ( Trar o2 ) -1 = L=(TraR2) -1 (3.14) 
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where for photons the constant a is given by 

a = 7r2k4h -3/15 (3.15) 

For neutrinos (fermions), a is 7/8 of the above value. 
From equations (3.12) and (3.13) it can be seen that as q approaches 1, u 

becomes infinite. This occurs at a finite time in the comoving frame as can be 
seen from equation (3.9). As the time grows large, the luminosity goes to zero 
exponentially [as can be shown by setting q = 1 - e in equations (3.11)-(3.13)]. 

Lo. ~ 2alro2(1 + r/)2 (ao +alro2)(ao + 5alro2) -2 exp (-2/~u) (3.16) 

where/~ is 

/~ = (1 + ~)3(a o + alro 2) (ao + 5alro2) -1 (qo + ~)-2 (2ro)-1 (3.17) 

The exponential dependence of the luminosity with time in the final stages of 
collapse has been noted byThorne and Ames (1968). The mass of the resultant 
black hole is given by equations (3.9) and (3.10) 

2 m ~  = ro(qo + ~7) 2 (1 + r/) -2 (3.18) 

It is interesting to note that the mass of the black hole depends on the initial 
conditions. Part of the decrease in the luminosity is due to the doppler shift 
associated with the velocity of the outer boundary (A35). This is described by 
the factor 1 + BRt (ARr)  -1 that goes like e -~u as u becomes large. 

4. A Solution-Radiative Zero 

A solution for a collapsing star characterized by the condition T n = 0 at 
r = ro with T °1 ~a 0 is given by 

R(r, t) = re -~t (4.1) 

B(r, t) = e-at[1 - (a o + 3a~ro2)2/34alr2(ao +alrU)-2/3 (a o + 5alro2) -1 ] (4.2) 

A(r, t)  = (ao + alr2)e -3at~2 (4.3) 

8nT°° = 4al(3ao + 5air 2) (ao + 3alro2)2/aeZ~t(ao + 3air2) -s/3 

x (ao + 5alro2) -1 + 3a2e~t(ao +air2) -2 (4.4) 

8zrT 11 = 4ale2~t[1 _ (a 0 + 3alro2)Zl3(ao + 5al r2) (ao + 3air2)-2~ 3 

x (% + 5air02) -1] (4.5) 

The parameter q is related to qo defined in equation (3.8) by 

q = qo e~t/2 (4.6) 

The time u as a function of q is given by 

u = 2a2ro3(ao + 5airo2)2(ao + alro2)-'4F(q, rt = 0) (4.7) 
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where F(q, '1) is defined in equation (3.13). The luminosity and mass are ~ve 
by 

Loo = 2aaro2q(1 - q) (ao + 5alro2) -1 (4.8) 

2m = 4alroae-~t(ao + 581ro2) -1 + c~2ro3(ao + alro2) -2 (4.9) 

while the mass of  the resulting black hole is 

2m/~ = aZro3(ao + 581ro z) (ao + aaroZ) -3 (4.10) 

Normally the formulas developed for the radiative zero solutions are simpler 
than those for the radiative nonzero. 

The most striking difference between the two types of solutions is in the 
asymptotic dependence of the luminosity as a function of time. The luminosity 
for the radiative zero is a factor of e #u larger than the other. In general the 
radiative zero solution loses more mass, has a greater luminosity, and lasts 
longer for a given initial mass and radius. The radiative zero requires some- 
thing like a shell at the outer boundary in order to join smoothly to the exterior 
Vadiya metric, an implicit assumption of the derivation of the luminosity 
formula given in equation (2.8). The lack of  continuity apparently has a 
profound effect upon the luminosity observed at infinity. 

5. Definite Models 

Presented is the evolution of two modets of  supernovas, each of which had 
an initial mass of  5 MG. One of the models, denoted by subscript N is the 
radiative nonzero solution given in Section 3, while the other, denoted by sub- 
script Z, is the radiative zero solution given in Section 4. 

Each of the models had the same initia! velocity (1.596 x 10 9 cm/sec), the 
same initial radius (2.159 x 108 cm) and the same central density (2.363 x 
10 s g/cm3). The central pressure and the total luminosity were different, as 
were the masses of the resulting black holes. The values for the various 
constants used were al = 2.136 x 10 -2o cm -2, and a = 7.394 see -1, which 
meant that the initial star was almost Newtonian and of uniform density. The 
value of the logarithmic decrement (/3) of the luminosity was 4.229 x 104 sec -a 
for the radiative nonzero and 2.413 x 104 sec -1 for radiative zero solution. 

Figure 1 gives the luminosity versus time of a distant observer of an initial 
5 M o model. Note that below the peak of the luminosity, the radiative and 
nonzero solutions give similar results. The radiative zero model, however, has 
a peak luminosity 80% larger than the radiative nonzero solution. Past the peak 
the luminosities drop precipitously because of gravitational red shift and 
Doppler shift. Because the luminosity is greater for the radiative zero solution, 
the model loses mass more rapidly than the radiative nonzero solution, as can 
be seen from Figure 2. From Figure 3 it can be seen that the star contracts 
rapidly until its radius approaches its gravitational radius. Note that the final 
radii are different because of the difference in the final masses. Below the 
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Figure 1. Luminosity observed by distant observer vs. time of a distant observer. 
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Figure 2. Stellar mass vs. time of distant observer. 
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peak the radiative zero and nonzero models have very similar effective 
temperatures,  as can be seen from Figure 4. As might be expected,  however, 
from Figure 1, the radiative zero solution has a higher temperature.  The 
equations of  state in each case are very nearly potytropic.  The adiabatic index 
is near 2/3 and 5/6 for the radiative zero and nonzero solutions, respectively. 
It is interesting to note from Figure 5 that  the CCLR is between the two other 
equations of  state below 1014 g/cm 3. 

Table I gives the mass, radius, and luminosity as a function of t ime to a 
distant observer. F rom the table it can be seen that the full width at half- 
maximum of  the luminosity is a factor of  4 larger for the radiative nonzero 
(23 msec) than the radiative zero model  (5.64 msec). After 98.5 msec the 
radius is close to the gravitational radius (2 m) for each of  the models. 
Table II gives the velocity and comoving time coordinates as a function o f  
distant observer t ime for the radiative zero and nonzero solutions. Note that  
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Figure 3, Stellar radius vs. time of distant observer. 
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Figure 4. Effective temperature vs, time of distant observer, 

for each of  the models the velocity of  the outer boundary  approaches that 
of  light as the gravitational radius is approached. 

Also, a number of  100 3 /o  models were treated. It was found that  the mass 
lost due to radiation increased as the equation of  state became stiffer, 

6. Discussion 

A striking aspect of  the two models is the dramatic drop in the luminosity 
past 98 msec. This is due to the large values of  the logarithmic decrements 
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given in the previous section. The exponents have time constants of  the order 
of  40/Jsec. Thus, an external observer would see one huge flash of  light and 
then darkness from such a star. This is one of  the most striking differences 
between the Newtonian and Einsteinian formulations of  hydrodynamics. In 
the comoving frame (in which Newtonian hydrodynamics is valid to at least 1%) 
the luminosity continues to increase as it collapses. The shutting off of  the 
luminosity is a distinctively relativistic effect discussed beautifully by Thorne 
(1969). Owing to radiation, each of  these stars loses a significant portion 
of  its initial mass (52% and 58%, respectively) within this 98 msec. After this 
the luminosity drops to small values. As the star shrinks toward the gravitational 
radius, the pressure, density, and temperature increase. To a distant observer 
clocks slow down as the star collapses to a black hole. It may be of  interest 
to note that in the comoving frame 1.8 sec of  proper time [dr = A(r  = O, t )  x 
dt  = aoS(t)dt] elapse from the start of  collapse (at r = 2.159 x 10 s cm) until it 
reaches its gravitational radius. This is a factor o f  21 larger than the free fall 
time for a collapsing dustball, an effect due to the action of  pressure forces as 
a brake. 

7. Conclusion 

Presented were two distinct stellar models that collapse to black holes. To 
an outside observer there can be profound differences between the radiative 
zero and nonzero solutions even for the same initial structure. Such analytic 
models allow for much greater flexibility in the discussion of  final stages of  
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TABLE I. Mass, radius, and luminosity versus time for two 
and nonzero 

5M® models-Radiative zero 

u(msec) MN/M® R~v/107 LN/IO ss Mz/Mo Rz/lO 7 Lz/lO ss 

0 5.00 21.6 3.45 5.00 
10.0 4.80 20.0 3.57 4.79 
20.0 4.60 18.5 3.72 4.57 
29.9 4.39 16.8 3.88 4.35 
39.9 4.17 15.0 4.09 4.12 
50.0 3.93 13.1 4.34 3.87 
55.1 3.80 12.1 4.50 3.73 
60.0 3.68 11.1 4.68 3.60 
65.0 3.54 10.0 4.89 3.46 
70.0 3.40 8.90 5.15 3.31 
75.0 3.25 7.69 5.47 3.16 
80.0 3.09 6.39 5.91 2.99 
85.0 2.92 4.94 6.53 2.80 
90.0 2.73 3.28 7.58 2.59 
91.0 2.68 2.89 7.90 2.55 
92.0 2.64 2.50 8.28 2.50 
93.0 2.59 2.08 8.75 2.45 
94.0 2.54 1.61 9.36 2.40 
94.5 2.51 1.36 9.73 2.37 
95.0 2.48 1.09 I0.1 2.34 
95.5 2.46 0.792 10.6 2.31 
95.76 2.44 0.628 10.7 2.29 
96.0 2.43 0.460 10.4 2.27 
96.3 2.41 0.240 8.19 2.25 
96.4 2.41 0.168 5.78 2.25 
96.5 2.40 0.109 2.20 2.24 
96.6 2.40 0.0792 0.202 2.23 
96.7 2.40 0.0721 5.24 x 10 .3 2.22 
96.8 2.40 0.0711 1.19 x 10 .4 2.22 
97.0 2.40 0.0709 1.66x 10 .8 2.20 
97.2 2.40 0.0709 1.85 x 10 -11 2.18 
97.4 2.40 0.0709 3.26x 10 -16 2.17 
97.5 2.40 0.0709 2.14x 10 -18 2.16 
97.7 2.40 0.0709 5.15x 10 -22 2.14 
97.88 2.40 0.0709 2.21 
98.0 2.40 0.0709 2.11 
98.1 2.40 0.0709 2. t 0 
98.2 2.40 0.0709 2.10 
98.3 2.40 0.0709 2.10 
98.4 2.40 0.0709 2. t 0 
98.5 2.40 0.0709 2.10 

21.6 3.64 
20.0 3.77 
18.4 3.92 
16.8 4.10 
15.1 4.31 
13.2 4.58 
12.2 4.75 
11.2 4.94 
10.2 5.17 
9.08 5.44 
7.91 5.79 
6.65 6.26 
5.30 6.93 
3.75 8.05 
3.40 8.38 
3.05 8.78 
2.67 9.27 
2.27 9.90 
2.06 10.3 
1.85 10.8 
1.61 11.3 
1.49 11.7 
1.37 12.0 
1.22 12.5 
1.17 12.7 
1.12 12.9 
1.06 13.2 
1.01 13.4 
0.950 13.7 
0.833 14.3 
0.713 14.9 
0.586 15.8 
0.518 16.3 
0.378 17.3 
0.249 18.0 
0.157 16.8 
0.0965 11.5 
0.0677 3.05 
0.0624 0.314 
0.0619 2.93x 10 -2 
0.0619 2.47x 10 -3 
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TABLE II. Comoving time t, and velocity Vversus time u for two 5M® models-radiative 
zero and nonzero 

u (msec) t n (msec) Lv/c IN tz (msec) l v /c  Iz 

0 0 0.0535 0 0.0535 
10.0 10.1 0.0557 10.3 0.0557 
20.0 21.3 0.0582 21.4 0.0579 
29.9 34.0 0.0612 34.1 0.0607 
39.9 49.1 0.0651 48.7 0.0641 
50.0 67.3 0.0698 66.5 0.0684 
55.1 78.1 0.0728 77.2 0.0712 
60.0 89.7 0.0763 88.7 0.0743 
65.0 104 0.0804 102 0.0780 
70.0 120 0.0865 I 17 0.0826 
75.0 140 0.0924 136 0.0845 
80.0 165 0.102 159 0.0964 
85.0 199 0.116 190 0.108 
90.0 255 0.144 237 0.129 
91.0 272 0.153 250 0.135 
92.0 291 0.165 265 0.143 
93.0 317 0.182 283 0.152 
94.0 251 0.207 305 0.165 
94.5 374 0.225 318 0.173 
95.0 404 0.252 333 0.183 
95.5 447 0.296 351 0.196 
95.76 479 0.334 362 0.204 
96.0 521 0.390 373 0.212 
96.3 608 0.541 389 0.225 
96.4 657 0.648 395 0.230 
96.5 715 0.805 401 0.235 
96.6 759 0.947 407 0.241 
96.7 772 0.993 415 0.248 
96.8 773 0.999  422 0.255 
97.0 773 1.000 440 0.273 
97.2 773 1.000 462 0.295 
97.4 773 1.000 488 0.325 
97.5 773 1.000 504 0.346 
97.7 773 1.000 547 0.404 
97.88 773 1.000 604 0.499 
98.0 773 1.000 666 0.627 
98.1 773 1.000 732 0.800 
98.2 773 1.000 780 0.956 
98.3 773 1.000 791 0.996 
98.4 773 1.000 792 1.000 
98.5 773 1.000 792 1.000 
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the stellar evolution as a function of the initial conditions and the properties 
of the model fluid than do numerical models. 

There are a number of other questions of  interest. Are there any more general 
solutions that are as simple? By the adjustment of some of the initial conditions 
can such a model become a stable neutron star rather than a black hole? Is 
there any new physics to be found, i.e., distinctly different physical solutions, 
within these equations? These questions will be addressed in subsequent papers. 
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Appendix A:  Matching Metrics across Moving Boundaries 

In order to relate physical quantities in one region to those determined in 
another, the continuity of the first and second fundamental forms can be used. 
The continuity of  these quantities is equivalent to the continuity of  the metric 
coefficients and their normal derivatives at the boundary of the regions (in same 
reference frame). In an orthonormal Caftan frame, the first and second funda- 
mental forms are the metric and the Ricci rotation coefficients, respectively 
(Cohen, 1970). 

Within the star the metric can be written (Landau and Lifshitz, 1971) 

ds 2 = _A  2dt 2 + B2dr 2 + R2df22 (A1) 

where the angular part is 

dg22 = dO 2 + sin20dcb 2 (A2) 

The metric exterior to a radiating star is (Vadiya, 1951 ; Misner, 1965; 
Lindquist et at., 1965) 

dS 2 = -(1  - 2m~ -1) du 2 _ 2dudf  + ~2d~22 (A3) 

or 

where 

ds~ = X2(du - d-~dr)~ + ~-~dr2 + V2da~ (A3a) 

.~2 = 1 - 2m(u)~ -1 (A4) 

The parameter re(u) is the total mass as seen by a distant observer while u is 
the time coordinate of a distant inertial observer at rest with respect to the 
center of the star. The luminosity as seen by a distant observer (Lindquist et al., 
1965; I.indquist, 1966) is given by 

zoo = - d m / d u  (A5) 



ANALYTIC SUPERNOVA MODELS AND BLACK HOLES 4 7  

The metric is continuous at the outer boundary for all 0 and e~ if(for dr = O) 

A2dt 2 = A 2 d u  2 + 2dudr (A6) 

and 

~(t) = R(r  o, t) (A7) 

Thus, the outer boundary of the star is related in a simple way to the metric 
coefficient in the comoving frame. 

From equation (A3a) a convenient orthonormal frame exterior to the star is 

~o = A d u  +A-ldF 

~1 = dLg-I 

~2  = ~dO (AS) 

~3 = Fsin Ode; 

In terms of this frame, the four-velocity and a vector normal to this are given 
by 

~" = 7(1, v, O, O) (Ag) 

X~ = 7(-v, 1, O, O) (A1 O) 

where 

7 -2 = 1 - v  2 (Al l )  

The orthonormal basis forms in a flame exterior to but comoving with the outer 
boundary are 

coo = 7(~o _ vUol) = _ ~ a  (A12) 

601 = 7(~1 _ v~o) = - ~ a ~  (A13) 

which is obtained from the relation~a~ a = u~60 ~ and-~a~ a = Xt~60~ In the 
comoving frame the four-velocity is u s = (1,0, 0, 0) while the normal is given 
by X i = (0, 1, 0, 0). Equations (A12) and (A13) can be inverted to yield 

~0 = 7(~oo + v601) (A14) 

~1 = 7(6ol + v600) (A15) 

The basis forms ~2 and ~a  are equal to their comoving frame counterparts. 
To find the Ricci rotation coefficients it is convenient to take the exterior 

derivative of 602 to obtain 

d ~  2 = dFAdO = r-l'),A(691 + v69 0)  A 69 2 (A16) 

where df has been eliminated in favor of wl and 60o in the comoving frame 
[equations (A15) and (AS)]. Thus, the Ricci rotation coefficient 7~2 in the 
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exterior comoving frame (a quantity that is equal to the derivative in the 
normal direction) is given by 

= ( h l  7) 

In the interior comoving frame this is given by 

7~2 = - R r ( R B ) - '  (A18) 

By equations (A1 7), (A18), and (A7) and the assumption that the Ricci 
rotation coefficient is continuous at the boundary gives the relation 

7 A =  R r B  -1 (A19) 

Another relation of interest is the expression for the proper time and velocity. 
The computations are facilitated by defining 

r' = A - 2  dF/du (A20) 

so that equation (A6) can be written 

d r  2 = A 2dr2 = _42du2(1 + 2/ )  (A21) 

In terms of the orthonormal basis forms u i is given by (Brill and Cohen, 
1966) 

u i= oJ /dr  (A22) 

so that 

-d o = ~" = ~o°/dr = (1 + r') (1 + 2r') -1/2 (A23) 

-dl = ~,v = gol/dr = 7r'(l + r') -1 (A24) 

From equations (A20), (A21), and (A23) we obtain 

A2r'2(1 + 2r') -~ = Rt2A -2 (A25) 

The use of equation (A19) brings tile expression for r' into the form 

r' = B R  t (ARr)  -1 [1 - BRt(ARr) - I ]  - t  (A26) 

where all quantities on the right-hand side of equation (4.3) are calculable in 
the comoving frame from interior quantities. Since all of the desired quantities 
are expressible in terms of r', we obtain from (A19), (A23), and (A26) 

7t 2 = Rr2B-2 _ R teA-2  (A27) 

from (A21), (A26), and (A27) 

du = A B d t R r *  [1 + B R t ( A R r )  -1] -1 (A28) 

from (A5) and (A27) 

2m = F[1 - 7121 = R [1 -- Rr=B -2 +Rt2A -2] (A29) 
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by differentiating (A29) with respect to u and using equation (A28) we have 

L= = -dm/du = - R r m t ( A B )  -1 [1 + BRt(ARr) -l] (A30) 

and from (A24) and (A26) the expression for the velocity v becomes 

= B R  t [ARr ] -1 (A31) 

Thus, the expressions given in equations (2.6)-(2.9) of the paper have been 
derived. The matcbAng of the solution in one region to that in another allows 
us to determine what an external observer would see from the events that an 
observer comoving with the matter would see. 

Appendix B 

Einstein's field equations in the comoving frame are given in equations (2.2) 
and (2.5). The mass within the sphere of radius r is given in equation (A29): 

2m = R [1 - Rr2B ~ + Rt2A-2]  (B1) 

Differentiation of equation (B1) with respect to t and the use of equations 
(2.3) and (2.5) yield 

mt = 47rR 2 [TalRt + T°IARrB -1 ] (B2) 

In the Vadiya metric, the stress energy tensor in a frame of reference at 
rest with respect to infinity is given by (using Einstein's field equations for 
the Vadiya metric) 

7oo = ~11 = ~ol  = _(4~rrZ~2)-adm/du > 0 (B3) 

The relation between the stress energy tensor in a frame moving with a 
velocity v with respect to infinity and the one given above can be found by 
using the relation for an arbitrary second-rank tensor Ku~ 

k u c ~ u ~  = Ku~c ouw~ (B4) 

The relation between the basis forms is given in equations (A12)-(A15). Hence, 
the stress energy tensor components are related by 

T~+ ° = T 11 = r °1 = T ° I ( 1  - U) (1 + / ) ) - 1  (85) 

given in equation (A31). The subscript + on Tua denotes quantities evaluated 
exterior to the star in the comoving frame. The above result is not too 
surprising in view of the character of electromagnetic radiation. As can be seen 
from equation (B2) above, if in the interior comoving frame T !  1 = T °1 = T °1, 
then one obtains similar expressions for the luminosity in the interior and 
exterior of the star corrected in a natural manner for the red-shift and length 
contraction familiar in relativity. Thus, to obtain consistent results, a condition 
to be imposed is 

T 11 = T 01 (B6) 
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evaluated at r = r o in the interior of the star. This condition is equivalent to the 
continuity of the second fundamental forms, 7~2 given in equation (A18) and 
7~o given by A r ( A B )  -1, as can be seen from the field equations [equations (B3) 
and (B5)]. Equation (B6) expresses the continuity of T TM, the radial compo- 
nents of the stress energy tensor. 

To solve equations (B1)-(B4) we assume that A, B, and R are given by 

R(r,  t) = re -a t  (B7) 

g(r ,  t )  = B ( r ) e  -~t  (B8) 

A(r,  t)  = A ( r ) S ( t )  (B9) 

where S is a function only of t and A and B are functions only of r. With these 
assumptions the field equations can be written 

8zrT °° = eZ~t[r -2 - (rB) -2 + 2Br(rB3)  -1 ] + 3~ZA-2S  -2 (B10) 

87rT u = eZa t [2Ar ( rAB2)  -1 - r -2 + (rB) -2] - A -2 [3a2S -2 + 2 a S t S  3] (BI 1) 

8zrT 22 = e2~ t [Ar ( rAB2)  -1 + A r r ( A B 2 )  -1 -- A r B r ( A B 3 )  -I  

- Br ( rB3)  -1] - A-Z[3a2S -2 + 2~S tS  -3] (BI 2) 

87rT m = 2 ~ A r ( A  2 9 ) - 1 e a t S  - t  (B13) 

The usual assumption of astrophysics is that the stress energy tensor for a 
spherically symmetric system is isotropic, i.e., 

T 11 = T 22 = T 33 ( B 1 4 )  

This assumption must break down near the surface where radially directed 
radiation dominates. It is a reasonable assumption, however, and leads to 
tractable models. In lieu of a detailed theory of the surface layers of  a super- 
nova we will use this assumption. We explicitly invoke this assumption by 
subtracting equation (B 1 1) from (B 12) and by requiring that the difference 
vanish. This leads to what we will call the radial equation 

0 = - r B r B - 3 [ A  + r A r ]  +B-2[rZArr  - r A t  - A ]  + A  (B15) 

which can be converted into a first-order linear differential equation for B -2 
in terms of A (Adams and Cohen, 1975). Two new solutions to this equation 
are (Adams and Cohen, 1975) 

A = ao + a i r  ~ 

B -2 = 1 - f o r 2 ( a o  + 3a i r2)  -213 

and 

A = a o exp (air 2) 

B -2 = 1 - r2e  2air~ [fo + 2ale-lEi( 1 + 2air2)] 

(B16) 
(B17) 

(ms) 

(B19) 
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where Ei(x)  is the exponential  integral (Abramowitz and Stegun, 1964). The 
first solution is the one used in the paper. The constant fo can be adjusted so 
that the bracketed quanti ty multiplying the e 2~t in T 11 is zero at r = r o. The 
result is]o = 4aa(a o + 3alro2)2/3(ao + 5alro2) -1 (B20) 

It remains now only to impose a boundary condition upon the other term. 
The radiative zero boundary condit ion is obtained by setting this term equal 
to zero, i.e., 

2St = -3m.g (B21) 

o r  

S(t) = e -3~r/2 (B22) 

These assumptions lead to the radiative zero solution given in equations (4.1)-  
(4.9) in the paper. 

The radiative nonzero solution is obtained by requiring that the extra term 
in equation (B11) or (BI 2) be equal to the term in equation (B13) for T °1 at 
r = r o. Thus, the boundary condition that T II = T m at r = r o is satisfied if  

2ArB-l e~tS-1 = -o2StS -3 - 3~S -2 (B23) 

The results of  the solution of  the above equation are given in the radiative 
nonzero solution in equations (3.1)-(3.13) of  the paper, 

Thus, two different boundary conditions applied to the stress energy tensor 
can have profoundly different effects as seen by an observer at infinity. It 
should be noted that the radiative nonzero boundary condition (because of  its 
internal consistency and continui ty)  is the more natural and realistic. Yet, the 
radiative zero boundary condition (because of its simplicity) is of ten used in 
the s tudy of  supernova events. 

References 

Abramowitz, M., and Stegun, I. (eds.) (1964). Handbook of  Mathematical Functions 
(National Bureau of Standards, Washington, D,C.). 

Adams, R. C., and Cohen, J. M. (1975). Astrophysical Journal 198,507. 
Adams, R. C., Cohen, J. M., Adler, R. J., and Sheffield, C. (1974). Astrophysical Journal, 

192, 525. 
Ames, W. L., and Thorne, K. S. (1968). Astrophysical Journal, 151,659. 
Arnett, W. D. (1966). Canadian Journal of  Physics, 44, 2553. 
Arnett, W. D. (1967). Canadian JournalofPhysics, 45, 1621. 
Arnett, W. D. (1969). Astrophysics and Space Science, 5, 180. 
Brill, D. R., and Cohen, J. M. (1966). Physical Review, 143, 101 t.  
Chandrasekhar, S. (1939). Introduction to the Theory of  Stellar Structure (Dover, New 

York). 
Cohen, J. M. (1970). International Journal of Theoretical Physics, 3,267. 
Colgate, S. A., and Chen, Y. H., 1972, Astrophysics and Space Science, 17, 325. 
Colgate, S. A., and White, R. H. (1966). Astrophysics Journal, 143,626. 
Landau, L., and Lifshitz, E. M. (1971). The Classical Theory ofFieMs, 3rd ed. (Addison- 

Wesley, Reading, Massachusetts). 
Lindquist, R. W. (1966). Annals of  Physics, New York, 37, 487. 



52 ADAMS AND COHEN 

Lindquist, R. W., Schwartz, R. A., and Misner, C. W. (1965). PhysicalReview B, 137, 
1364. 

Misner, C. (1965). Physical Review B, 137, 1360. 
Schwartz, R. A. (I 967). Annals o f  Physics, New York, 43, 42. 
Schwarzschild, M. (1958). Structure and Evolution of  the Stars (Dover, New York). 
Thorne, K. S. (1969). Enrico Fermi, Varenna. 
Thorne, K. S., and Ames, W. L. (1968): Astrophysical Journal, 151,659. 
Vadiya, P. C. (1951). Proceedings o f  the Indian Academy, o f  Science, A33,264. 
Vadiya, P. C. (I 953). Nature, 171,260. 
Wilson, J. R. (1971). Astrophysical Journal, 163, 209. 
Wilson, J. R. (1974). Physical Review Letters, 32,849. 


